We are given some pairint function $e: G_{1} \times G_{2} \rightarrow G_{T}$, elements $g_{1} \in G_{1}, g_{2} \in G_{2},\left|G_{1}\right|=\left|G_{2}\right|=\left|G_{T}\right|=p$, and some hash $H: \mathcal{M} \rightarrow G_{1}$. The code calculates some Lagrange basis polynomials and evaluates them at $x=0$. Let's call these values $l_{0}, l_{1}, L_{0}, L_{1}, L_{2}$ to be exact. We input the values $H(m)^{a}, H(m)^{b}, g_{2}^{x_{0}}, g_{2}^{x_{1}}, g_{2}^{x_{3}}$ and are constrained by $g_{2}^{x_{0}}$ and $g_{2}^{x_{1}}$ should be one of the existing public keys. Ideally m should be "this stuff", so we can precompute $H(m)$. To validate the pairing, the code verifies

$$
e\left(H(m)^{a l_{0}} \cdot H(m)^{b l_{1}}, g_{2}\right)=e\left(H(m), g_{2}^{x_{0} L_{0}} \cdot g_{2}^{x_{1} L_{1}} \cdot g_{2}^{x_{2} L_{2}}\right)
$$

We simplify this to

$$
e\left(H(m), g_{2}\right)^{a l_{0}+b l_{1}}=e\left(H(m)^{a l_{0}+b l_{1}}, g_{2}\right)=e\left(H(m), g_{2}^{x_{0} L_{0}+x_{1} L_{1}+x_{2} L_{2}}\right)=e\left(H(m), g_{2}\right)^{x_{0} L_{0}+x_{1} L_{1}+x_{2} L_{2}}
$$

Therefore the exponents must be equal. We can then simplify to

$$
a l_{0}+b l_{1}=x_{0} L_{0}+x_{1} L_{1}+x_{2} L_{2}
$$

Since x_{2} is totally unconstrained, se just solve for it.

$$
x_{2}=\frac{1}{L_{2}}\left(a l_{0}+b l_{1}-x_{0} L_{0}-x_{1} L_{1}\right) .
$$

In the end, we need to operate on the public keys $g_{2}^{x_{0}}$ and $g_{2}^{x_{1}}$ so we lift this back into G_{2} and use some math

$$
g_{2}^{\frac{1}{L_{2}}\left(a l_{0}+b l_{1}-x_{0} L_{0}-x_{1} L_{1}\right)}=\left(g_{2}^{a l_{0}+b l_{1}} \cdot\left(g_{2}^{x_{0}}\right)^{-L_{0}} \cdot\left(g_{2}^{x_{1}}\right)^{-L_{1}}\right)^{\frac{1}{L_{2}}}
$$

Now the RHS is something we can compute given choices for a and b. Problem solved.

