CS/ECE 374 A <4 Spring 2018

» Homework 6 &
Due Tuesday, March 13, 2018 at 8pm

1. Suppose you are given an array A[1..n] of positive integers, each of which is colored either
red or blue. An increasing back-and-forth subsequence is an sequence of indices I[1..£]
with the following properties:

* 1<I[j]<nforallj.

o ALI[j]1<A[I[j+1]]forall j <£.

o IfA[I[j]] is red, then I[j+ 1] > I[j].

o IfA[I[j]]is blue, then I[j+ 1] <I[j].
Less formally, suppose we start with a token on some integer A[j], and then repeatedly
move the token Left (if it’s on a bLue square) or Right (if it’s on a Red square), always

moving from a smaller number to a larger number. Then the sequence of token positions is
an increasing back-and-forth subsequence.

Describe and analyze an efficient algorithm to compute the length of the longest
increasing back-and-forth subsequence of a given array of n red and blue integers. For
example, given the input array

[L[ifof2fs]of6]6[4f5]8]0]7]7][3][2][3][8[4]0]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

your algorithm should return the integer 9, which is the length of the following increasing
back-and-forth subsequence:

[of1]2]3]4]6]7]8]9]
8 11 12

20 1 16 17 9 13

(The small numbers are indices into the input array.)

2. Describe and analyze an algorithm that finds the largest rectangular pattern that appears
more than once in a given bitmap. Your input is a two-dimensional array M[1..n,1..n] of
bits; your output is the area of the repeated pattern. (The two copies of the pattern might
overlap, but must not actually coincide.)

For example, given the bitmap shown on the left in the figure below, your algorithm
should return 15 x 13 = 195, because the same 15 x 13 doggo appears twice, as shown on
the right, and this is the largest such pattern.

CS/ECE 374A Homework 6 (due March 13) Spring 2018

3. AVL trees were the earliest self-balancing balanced binary search trees, first described in
1962 by Georgy Adelson-Velsky and Evgenii Landis. An AVL tree is a binary search tree
where for every node v, the height of the left subtree of v and the height of the right
subtree of v differ by at most 1.

Describe and analyze an efficient algorithm to construct an optimal AVL tree for a given
set of keys and frequencies. Your input consists of a sorted array A[1..n] of search keys and
an array f[1..n] of frequency counts, where f[i] is the number of searches for A[i]. Your
task is to construct an AVL tree for the given keys such that the total cost of all searches is
as small as possible. This is exactly the same cost function that we considered in Thursday’s
class; the only difference is that the output tree must satisfy the AVL balance constraint.

[Hint: You do not need to know or use the insertion and deletion algorithms that keep
the AVL tree balanced.]

CS/ECE 374A Homework 6 (due March 13) Spring 2018

Solved Problems

4. A string w of parentheses (and) and brackets [and] is balanced if and only if w is
generated by the following context-free grammar:

S—el(S)ILST]SS
For example, the string w= ([()J[1())L() ()1() is balanced, because w = xy, where

x=([0100) ad y=L[0OO10.

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1..n], where
Alil€{(,), [, 1} for every index i.

Solution: Suppose A[1..n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring Ali..k]. We
need to compute LBS(1,n). This function obeys the following recurrence:

0 ifi>k

24+LBS(i+1,k—1)

max (LBS(i, /) + LBS(j +1,k)) L]
e

LBS(i, j) = { max

k—
kmaix (LBS(i,j) +LBS(j+1, k)) otherwise
J:

Here A[i] ~ A[k]indicates that A[i] and A[k] are matching delimiters: Either A[i] = (
and A[k]=) orAli]=[and A[k]=1.

We can memoize this function into a two-dimensional array LBS[1..n,1..n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both),
we can evaluate this array row-by-row from bottom up in the outer loop, scanning
each row from left to right in the inner loop. The resulting algorithm runs in O(n3)
time.

LONGESTBALANCEDSUBSEQUENCE(A[1..n]):
fori <~ ndownto 1
LBS[i,i] < O
fork—i+1ton
if A[i] ~ A[k]
LBS[i,k] < LBS[i+1,k—1]+2
else
LBS[i,k]< 0
forje—itok—1
LBS[i, k] « max {LBS[i, k], LBS[i,j]1+LBS[j + 1,k1}
return LBS[1,n]

Rubric: 10 points, standard dynamic programming rubric

CS/ECE 374A Homework 6 (due March 13) Spring 2018

5. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T'.

e MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

* MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun + Z MaxFunNo(w)
children w of v

MaxFunNo(v) = Z max{MaxFunYes(w), MaxFunNo(w)}

children w of v

(These recurrences do not require separate base cases, because >, @ = 0.) We can
memoize these functions by adding two additional fields v.yes and v.no to each node
v in the tree. The values at each node depend only on the vales at its children, so we
can compute all 2n values using a postorder traversal of T.

CompUTEMAXFUN(V):
v.yes < v.fun
BEsSTPARTY(T): v.no < 0
CoMmPUTEMAXFUN(T.root) for all children w of v
return T.root.yes ComPUTEMAXFUN(w)
v.yes « v.yes + w.no
v.no < v.no + max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!?) The algorithm spends O(1)
time at each node, and therefore runs in O(n) time altogether. [|

“A naive recursive implementation would run in O(¢") time in the worst case, where ¢ = (1++/5)/2 ~
1.618 is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

CS/ECE 374A Homework 6 (due March 13) Spring 2018

Solution (one function): For each node v in the input tree T, let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun + Z MaxFun(w).

grandchildren w of root
The function MaxFun obeys the following recurrence:

v.fun + Z MaxFun(x)

grandchildren x of v

Z MaxFun(w)

children w of v

MaxFun(v) = max

(This recurrence does not require a separate base case, because Z @ =0.) We can
memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T.

CoMPUTEMAXFUN(V):
BESTPARTY(T): yes < v.fun
CoMPUTEMAXFUN(T.root) no < 0
party « T.root.fun for all children w of v
for all children w of T.root ComMPUTEMAXFUN(w)
for all children x of w no « no + w.maxFun
party « party + x.maxFun for all children x of w
return party yes < yes + x.maxFun
v.maxFun < max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!?)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. [|

?Like the previous solution, a direct recursive implementation would run in O(¢") time in the worst
case, where ¢ = (1+ +/5)/2 ~ 1.618 is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct
solutions.

