CS/ECE 374 A ♦ Spring 2018 Momework 10 Due Tuesday, April 24, 2018 at 8pm This is the last graded homework before the final exam. - 1. (a) A subset *S* of vertices in an undirected graph *G* is *half-independent* if each vertex in *S* is adjacent to *at most one* other vertex in *S*. Prove that finding the size of the largest half-independent set of vertices in a given undirected graph is NP-hard. - (b) A subset *S* of vertices in an undirected graph *G* is **sort-of-independent** if if each vertex in *S* is adjacent to *at most 374* other vertices in *S*. Prove that finding the size of the largest sort-of-independent set of vertices in a given undirected graph is NP-hard. - 2. Fix an alphabet $\Sigma = \{0, 1\}$. Prove that the following problems are NP-hard. - (a) Given a regular expression R over the alphabet Σ , is $L(R) \neq \Sigma^*$? - (b) Given an NFA M over the alphabet Σ , is $L(M) \neq \Sigma^*$? [Hint: Encode all the **bad** choices for some problem into a regular expression R, so that if **all** choices are bad, then $L(R) = \Sigma^*$.] 3. Let $\langle M \rangle$ denote the encoding of a Turing machine M (or if you prefer, the Python source code for the executable code M). Recall that $x \cdot y$ denotes the concatenation of strings x and y. Prove that the following language is undecidable. SelfSelfAccept := $$\{\langle M \rangle \mid M \text{ accepts the string } \langle M \rangle \bullet \langle M \rangle \}$$ Note that Rice's theorem does not apply to this language. ¹In fact, both of these problems are NP-hard even when $|\Sigma| = 1$, but proving that is much more difficult. ## Solved Problem 4. A *double-Hamiltonian tour* in an undirected graph *G* is a closed walk that visits every vertex in *G* exactly twice. Prove that it is NP-hard to decide whether a given graph *G* has a double-Hamiltonian tour. This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$. **Solution:** We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a small gadget to every vertex of G. Specifically, for each vertex v, we add two vertices v^{\sharp} and v^{\flat} , along with three edges vv^{\flat} , vv^{\sharp} , and $v^{\flat}v^{\sharp}$. A vertex in G, and the corresponding vertex gadget in H. I claim that *G* has a Hamiltonian cycle if and only if *H* has a double-Hamiltonian tour. \Longrightarrow Suppose G has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of H by replacing each vertex v_i with the following walk: $$\cdots \rightarrow \nu_i \rightarrow \nu_i^{\flat} \rightarrow \nu_i^{\sharp} \rightarrow \nu_i^{\flat} \rightarrow \nu_i^{\sharp} \rightarrow \nu_i \rightarrow \cdots$$ Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the original graph G; the tour D must visit v exactly twice. Those two visits split D into two closed walks, each of which visits v exactly once. Any walk from v^{\flat} or v^{\sharp} to any other vertex in H must pass through v. Thus, one of the two closed walks visits only the vertices v, v^{\flat} , and v^{\sharp} . Thus, if we simply remove the vertices in $H \setminus G$ from D, we obtain a closed walk in G that visits every vertex in G once. Given any graph G, we can clearly construct the corresponding graph H in polynomial time. With more effort, we can construct a graph H that contains a double-Hamiltonian tour *that traverses each edge of* H *at most once* if and only if G contains a Hamiltonian cycle. For each vertex v in G we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page. A vertex in G, and the corresponding modified vertex gadget in H. **Non-solution (self-loops):** We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a self-loop every vertex of G. Given any graph G, we can clearly construct the corresponding graph H in polynomial time. An incorrect vertex gadget. Suppose *G* has a Hamiltonian cycle $\nu_1 \rightarrow \nu_2 \rightarrow \cdots \rightarrow \nu_n \rightarrow \nu_1$. We can construct a double-Hamiltonian tour of *H* by alternating between edges of the Hamiltonian cycle and self-loops: $$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1$$. On the other hand, if H has a double-Hamiltonian tour, we *cannot* conclude that G has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses any self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle. This graph has a double-Hamiltonian tour. ÷ Rubric: 10 points, standard polynomial-time reduction rubric